COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

COURS : PROGRAMMATION DYNAMIQUE
= ALGORITHME DE BELLMAN-FORD=

Notre sixieme étude a pour but d’introduire un algorithme de calcul du plus court chemin
dans un graphe a I'aide de la programmation dynamique. L’algorithme de Bellman-Ford
résout le probléme du plus court chemin a partir d’'une source unique en présence d’arétes
de longueur négative ; il présente également I'avantage d’étre « plus distribué » que
I'algorithme de Dijkstra et, pour cette raison, a profondément influencé la maniere dont le
trafic est acheminé sur Internet.

1) PLUS COURTS CHEMINS AVEC DES LONGUEURS D’ARETES NEGATIVES........ccccvrureuereenenne 2
I.1. Le plus court chemin a partir d’'une SOUrce UNIQUEcoecuvviiiiieeeeeeiiiiiiieeeee e e e 2
1.2. Le probléeme des cycles NEZAtifsuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiee .. 3

11) DEFINITION DU PROBLEMEc.cocuiuiuinnseriiisitsseesenssssssssssssssssstsssssssssenssssssssssssssssses 4

I11) SOUS-STRUCTURE OPTIMALE ET RELATION DE RECURRENCE..........cccererveruereeruereereesensenne 5
I11.1. Recherche des SOUS-PrODIEIMESuvuveiririieriiiriieriierirerrrrrrarrarr e —————————————————————————————. 5
1.2, SOUS-STrUCTUIE OPTIMAIE ..vvvviiriiriiiiiiiiieiiietieerrerrrerrrar e aerrarrrarrraarraarrraraaarrarssssrrassrnnsannes 7
[11.3. Equation de récurrence sur les valeurs Optimalesccccevevereeveeeeeeeeseeseseeeseenenns 8
1 O 1 =T e - T =1 U PSP P P PP PPPPPN 8

IV) SOUS-PROBLEMES ET COMPLEXITE........cccuerueerereeerseessesseesesssessesssessessessessessssssssssensenses 10
IV.1. Définition des SOUS-ProBIEMES.......cuiiiiiiiiiiiiiiiiiiieiieeeeeeeeee e eerereereereeeerarererrereearaaaaane 10
IV.2. Exemple d’application des équations de récurrence — graphe sans cycle négatif 10
IV.3. Exemple d’application des équations de récurrence — graphe avec cycle négatif...... 12
IV.4. SChEMQ@ 0@ MECUISIONeeeiiiiee ettt e e e e s 15

V) ALGORITHMES DE PROGRAMMATION DYNAMIQUEccceevmeeeemmmemeemnneeeeeeeeeneeeeneeneenns 16
V. 1. AlgOrithme tOP-QOWN ...ceiiiiiiiiiieeeeee e e e e e e e e e e e e eaaaraneeeas 16
V.2. Complexité de I'algorithme top-dOWN......c..eueiiiiiiiee e 17
V.3. Algorithme bottom-up ... 18
V.4. Complexité de I'algorithme bottom-up ... 19

V1) ALGORITHME DE RECONSTRUCTION......ccccetrerremmmmemmmemememeeeeemeeneessseessssssesssssssssssssssssssssns 20
VI.1. Principe et algorithme de reconstruction...........ccccciii 20
VI.2. Complexit@ fiNale........cooooiiiiiii 23

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

1) PLUS COURTS CHEMINS AVEC DES LONGUEURS D’ARETES NEGATIVES
I.1. Le plus court chemin a partir d’une source unique

Dans le probleme du plus court chemin a partir d’une source unique, I’'entrée est constituée
d’un graphe orienté G = (V, E) avec une longueur réelle €. pour chaque aréte e € E, et d'une
origine désignée s € V, appelée le sommet source ou sommet de départ. La longueur d’un
chemin est la somme des longueurs de ses arétes.

Le réle d’un algorithme est de calculer, pour chaque destination possible v, la longueur
minimale dist(s, v) d’un chemin orienté dans G allant de s a v (si un tel chemin n’existe pas,
dist(s, v) est définie comme valant +). Par exemple, les distances de plus court chemin
depuis s dans le graphe figure 1 sont dist(s, s) = 0, dist(s, v) = 1, dist(s, w) = 3, et dist(s, t) =6 :

Figure 1 : Exemple de graphe orienté

Par exemple, si chaque aréte e a une longueur unitaire €. = 1, un plus court chemin
minimise le nombre de sauts (c’est-a-dire le nombre d’arétes) entre son origine et sa
destination. Si le graphe représente un réseau routier et que la longueur de chaque aréte est
le temps de trajet attendu d’une extrémité a I'autre, alors le probléme du plus court chemin
a partir d’une source unique consiste a calculer les temps de conduite depuis une origine (le
sommet source) vers toutes les destinations possibles.

Vous connaissez déja I'algorithme de Dijkstra pour le cas particulier du probléme du plus
court chemin a partir d’une source unique dans lequel chaque longueur d’aréte est non
négative. Mais I'algorithme de Dijkstra n’est pas toujours correct dans les graphes
comportant des longueurs d’arétes négatives. Il échoue méme dans un exemple aussi trivial
que celui de la figure 2 (ici, I'algorithme de Dijkstra donnerait une valeur minimale de -2 au
lieu de -4) :

Figure 2 : Exemple d'un graphe orienté avec des arétes de valeurs négatives

Si nous voulons prendre en charge des longueurs d’arétes négatives, il nous faudra un
nouvel algorithme de plus court chemin.

Remarque : on ne peut pas réduire le probléme du plus court chemin a partir d’'une source
unique avec des longueurs d’arétes quelconques au cas particulier des longueurs d’arétes
non négatives en ajoutant une grande constante positive a la longueur de chaque aréte.
Dans I'exemple a trois sommets de la figure 2, ajouter 5 a la longueur de chaque aréte ferait
passer le plus court chemindes >v—>tas—t.

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

1.2. Le probleme des cycles négatifs

Dans de nombreuses applications, comme le calcul d’itinéraires routiers, les longueurs
d’arétes sont automatiquement non négatives et il n’y a donc pas lieu de s’inquiéter. Mais
les chemins dans un graphe peuvent représenter des séquences abstraites de décisions. Par
exemple, on peut vouloir calculer une séquence rentable de transactions financiéres
impliquant a la fois des achats et des ventes. Ce probléme correspond a la recherche d’un
plus court chemin dans un graphe dont les longueurs d’arétes sont a la fois positives et
négatives.

Avec des longueurs d’arétes négatives, il faut faire attention a ce que I'on entend méme par
« distance de plus court chemin ». C'est suffisamment clair dans I’'exemple précédent de la
figure 2 : dist(s, s) = 0, dist(s, v) = 1 et dist(s, t) = -4. Mais cela se complique dans un graphe
comme celui de la figure 3 :

Figure 3 : Exemple de graphe orienté avec un cycle négatif

Le probléme est que ce graphe contient un cycle négatif, c’est-a-dire un cycle orienté pour
lequel la somme des longueurs des arétes est négative. Que pourrait-on entendre par « plus
court chemindesav»?

Option n°1 : autoriser les cycles.

La premiere option consiste a autoriser des chemins de s a v qui incluent un ou plusieurs
cycles. Mais alors, en présence d’un cycle négatif, un « plus court chemin » peut méme ne
pas exister. Par exemple, dans le graphe ci-dessus, il existe un chemin de s a v en un seul
saut, de longueur 10. En ajoutant a la fin une traversée de cycle, on obtient un chemin de

s a v en cing sauts, de longueur totale 8. En ajoutant une deuxieme traversée, on augmente
le nombre de sauts a 9 mais on diminue la longueur totale a 6... et ainsi de suite, a I'infini.

Ainsi, il n’existe pas de plus court chemin de s a v, et la seule définition raisonnable de
dist(s, v) est -oo.

Option n°2 : interdire les cycles.

Sans répétition de sommets autorisée, il n’y a qu’un nombre fini de chemins a prendre en
compte. Le « plus court chemin de s a v » serait alors celui dont la longueur est la plus petite.
Cette définition est parfaitement cohérente, mais il existe un probleme plus subtil : en
présence d’un cycle négatif, cette version du probléme du plus court chemin a partir d’'une
source unique est ce qu’on appelle un « probleme NP-difficile ». Ce sont des problemes pour
lesquels on ne connait pas d’algorithme qui soit garanti correct et qui s’exécute en temps
polynomial.

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

En interdisant les cycles, on impose la contrainte globale « ne pas repasser par un sommet »
qui rapproche le probleme de problémes combinatoires difficiles. Avec des poids négatifs,
cette contrainte change totalement la nature du probléme : on ne peut plus s’appuyer sur
les propriétés qui rendent Dijkstra/Bellman-Ford efficaces.

Nous allons donc résoudre le probléeme du plus court chemin a partir d’une source unique
pour des graphes qui ne contiennent aucun cycle négatif, comme I'exemple a trois sommets
de la figure 2.

I1) DEFINITION DU PROBLEME

L'algorithme de Bellman-Ford résout le probléeme du plus court chemin a partir d’'une source
unique dans des graphes comportant des longueurs d’arétes négatives, en ce sens qu’il
calcule soit les distances de plus court chemin correctes, soit détermine correctement que le
graphe d’entrée contient un cycle négatif.

Cet algorithme découle naturellement du schéma de conception que nous avons utilisé dans
nos autres études de cas en programmation dynamique.

Probléme du plus court chemin a partir d’une source unique

Entrée : Un graphe orienté G = (V, E), un sommet source s € V, et une longueur réelle
€. pour chaque aréte e € E.

Sortie : I'un des résultats suivants :

- la distance de plus court chemin dist(s, v) pour chaque sommetv €V ; ou
- une déclaration indiguant que G contient un cycle négatif.

Bellman-Ford est surtout utilisé dés qu’on a des poids négatifs possibles et/ou le besoin
explicite de détecter un cycle négatif. Voici quelques exemples :

- Routage dans les réseaux : chaque routeur maintient une estimation de la
« distance » (co(t) vers chaque destination et I'améliore a partir des informations de
ses voisins.

- Détection d’arbitrage en finance : Pour modéliser des échanges de devises, on
construit un graphe ou les arétes représentent des taux de change, puis on
transforme les poids. Une opportunité d’arbitrage correspond alors a un cycle de
poids total négatif. Bellman-Ford est utile parce qu’il détecte précisément ce type de
cycles.

- Dans certains modeles de planification temporelle, utiliser Bellman-Ford sur le graphe
des contraintes sert a détecter des incohérences (cycles négatifs).

Pour résoudre ce probléeme de maniere exhaustive (par brute force) et trouver la plus courte
distance d’une source s vers une destination v, il faudrait énumérer tous les chemins simples
de s vers chaque v, calculer la longueur de chacun (somme des arétes) et prendre le
minimum.

Dans un graphe orienté trés dense, on peut permuter au plus les (n-2) sommets
intermédiaires, et le nombre de chemins simples de s a un sommet v est majoré par C:(n-2)!

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

(ou C est une constante et n le nombre de sommets). Si on recalcule la somme des poids en
parcourant le chemin (colt en O(n) par chemin), on obtient une complexité totale en O(n-(n-
2)!) = O(n!). C'est un probléme a complexité factorielle, donc beaucoup plus grande
qgu’exponentielle, qui demande une approche plus efficace.

Si en plus on souhaite obtenir les distances les plus courtes depuis la source s vers chacun
des sommets qui composent le graphe, la complexité augmente en O(n?:(n-2)!) = O(n-n!).

Remarqgue : si on autorise les cycles et qu’on fait tous les chemins sans borne, ce n’est méme
pas un algorithme fini : il y a une infinité de chemins possibles (on peut boucler
arbitrairement), donc un algorithme exhaustif ne termine pas en général.

I11) SOUS-STRUCTURE OPTIMALE ET RELATION DE RECURRENCE

lll.1. Recherche des sous-probléemes

Comme toujours en programmation dynamique, I’étape la plus importante consiste a
comprendre les différentes maniéres dont une solution optimale peut étre construite a
partir de solutions optimales a des sous-problémes plus petits.

Une premiére intuition pourrait étre que les sous-problemes doivent correspondre a des
sous-graphes du graphe d’entrée initial, avec une taille de sous-probléme égale au nombre
de sommets ou d’arétes dans le sous-graphe. Cette idée a bien fonctionné pour le probleme
WIS sur des graphes en chemin (voir le cours d’introduction a la programmation
dynamique), ou les sommets étaient intrinsequement ordonnés et ou il était relativement
clair sur quels sous-graphes se concentrer. Cependant, avec un graphe général, en revanche,
il n’existe pas d’ordre intrinseque des sommets ou des arétes.

L'algorithme de Bellman-Ford adopte une approche différente. Intuitivement, on peut
s’attendre a ce qu’un préfixe P’ d’un plus court chemin P soit lui-méme un plus court chemin,
mais vers une destination différente :

P’: plus court chemins — w ?

|
P: plus court chemins — v

Figure 4 : Le préfixe P’ du plus court chemin P (s— v) est-il lui-méme un plus court chemin vers w ?

Cependant, avec des longueurs d’arétes négatives, la longueur de P’ pourrait étre supérieure
a celle de P. En revanche, P’ contient moins d’arétes que P, ce qui motive I'idée ingénieuse a
la base de I'algorithme de Bellman-Ford : introduire un paramétre i de nombre de sauts qui
restreint artificiellement le nombre d’arétes autorisées dans un chemin, les sous-problémes
« plus grands » disposant d’'un budget d’arétes i plus élevé. Ainsi, un préfixe de chemin peut
effectivement étre considéré comme la solution d’un sous-probleme plus petit.

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

Prenons par exemple le graphe de la figure 5 ci-dessous et pour la destination v, les sous-
problémes correspondant a des valeurs successives du budget d’arétes i. Définissons Liy
comme la longueur d’un plus court chemin de s a vcomportant au plus i arétes.
- Lorsqueivaut 0 ou 1, il n’existe aucun chemin de s a vcomportant au plus i arétes, et
il n’y a donc pas de solution aux sous-problémes correspondants. La distance de plus
court chemin sous la contrainte du nombre de sauts est alors Loy = L1,y = +00.
- Lorsquei=2, il existe un unigue chemin de s a vcomportant au plusiarétes (s >t —
v), et la valeur du sous-probleme est L, = 4.
- Lorsque i = 3 (ou davantage), le chemin s— u — w — v devient admissible et fait
baisser la distance de plus court cheminde4a3:Llsy=3

Figure 5 : Exemple de graphe

Les chemins comportant des cycles sont autorisés comme solutions d’un sous-probleme. Si
un chemin utilise une aréte plusieurs fois, chaque utilisation est comptabilisée dans son
budget de nombre de sauts. Une solution optimale pourrait trés bien parcourir un cycle
négatif encore et encore, mais elle finira par épuiser son budget d’arétes (fini). Pour une
destination v fixée, I'ensemble des chemins admissibles s’agrandit avec i, et ainsi Liy ne peut
que diminuer lorsque i augmente.

Contrairement a nos études de cas précédentes en programmation dynamique, chaque
sous-probléme travaille avec I'entrée compléte (plutét qu’avec un préfixe ou un sous-
ensemble de celui-ci) ; le caractere ingénieux de ces sous-problémes réside dans la maniere
dont ils contrdlent la taille autorisée de la sortie.

Tel qu’énoncé, le parameétre i pourrait étre un entier positif arbitrairement grand, et il
existerait donc une infinité de sous-problémes. Cependant, nous verrons bientot qu’il n’y a
aucune raison de s’occuper des sous-problémes pour lesquels i est supérieur a n, le nombre
de sommets, ce qui implique qu’il y a O(n?) sous-problémes pertinents.

Sous-problémes de I'algorithme de Bellman-Ford

Calculez Liy, la longueur d’un plus court chemin de s a vdans G comportant au plus
i arétes, les cycles étant autorisés. (Si un tel chemin n’existe pas, définir Liy = +o)

(Pour chaquei=0,1,2..etchaquev e V)

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

l1l.2. Sous-structure optimale

Considérons un graphe d’entrée G = (V, E) avec un sommet source s € V, et fixons un sous-
probleme, défini par un sommet destination v € V et une contrainte de nombre de sauts i €
{1,2,3,..}.

Supposons que P soit un chemin de s a vcomportant au plus i arétes, et gqu’il soit de plus le
plus court parmi ces chemins. A quoi doit-il ressembler ? Deux cas sont possibles :

Cas n°1: P comporte (i - 1) arétes ou moins.

Dans ce cas, le chemin P peut immédiatement étre interprété comme une solution au sous-
probléme plus petit ayant pour budget d’arétes (i — 1) (avec toujours pour destination v).

Cas n°2 : P comporte i arétes.

Soit L la longueur de P. Soit P’ les (i - 1) premiéres arétes de P, et (w, v) son dernier saut de
longueur 8. Le préfixe P’ est alors un chemin optimum de s a w comportant au plus (i - 1)
arétes et de longueur L - 8y, (sinon on pourrait améliorer P en remplacant le préfixe P’ par
un meilleur, et obtenir un chemin s — v encore plus court, ce qui est contradictoire).

P’: chemin s — w (i-1 arétes, longueur L— €

WV)

wv

i
P: chemin s — v (i arétes, longueur L)
Figure 6 : lllustration du cas n°2

Exemple : Soit le graphe ci-dessous (figure 7). On fixe i = 3 (au plus 3 arétes) :
Casn°l: Lechemin P1l:s—a —va2arétes et salongueur vaut 3. Pour le sous
probléme « au plus 3 arétes », P1 est une solution optimale. Comme P1 utilise 2 arétes et
qu’il est solution optimale au probléme « au plus 3 arétes », il est aussi une solution
optimale au probléme « au plus 2 arétes ».

Figure 7 : Exemple de graphe

Casn°2:Le chemin P2 :s—> b — c— v aexactement 3 arétes et sa longueur vaut 3. Si on
retire la derniére aréte ¢ — v, on obtient le préfixe P’2 : s - b — ¢, le chemin de s vers c,
avec au plus (i - 1) = 2 arétes, de longueur 3-8, =3-1=2.

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

Ce que formalise Bellman-Ford est que si un plus court chemin P : s — v avec budget i utilise
exactement i arétes et se termine par (w — v), alors son préfixe P’ : s — w doit étre un plus
court chemin vers w avec budget (i - 1).

I11.3. Equation de récurrence sur les valeurs optimales

Comme d’habitude, I'étape suivante consiste a synthétiser notre compréhension de la sous-
structure optimale en une récurrence qui met en ceuvre une recherche exhaustive parmi les
candidats possibles a une solution optimale.

On note Liy la longueur minimale d’'un chemin de s a v comportant au plus i arétes, les cycles
étant autorisés (s’il n’existe pas de tels chemins, alors Liy = + o).

Récurrence sur la valeur de la solution optimale

Les cas de base sont (s est le sommet de départ) :

- Los=0 (il existe un chemin de s — s utilisant 0 arétes — chemin vide de longueur 0)

- Loy =+00 pourtoutv#s € V (avec 0 arétes, on ne peut atteindre aucun autre
sommet autre que s)

Pourtouti>lettoutveV:
Li—1, (cas n°1)

L;, = min
Min gy) EE{ Li_q1y + {’W,U} (casn®2)

Le « min » externe dans la récurrence met en ceuvre la recherche exhaustive entre le cas 1
et le cas 2. Le « min » interne met en ceuvre la recherche exhaustive, a I'intérieur du cas 2,
sur tous les choix possibles pour le dernier saut d’un plus court chemin.

Si Li-1v et tous les Li-1,w pertinents valent +o, alors v est inatteignable depuis s en i sauts ou
moins, et on interpréte la récurrence comme L;y = +o0.

111.4. Critére d’arrét

Dans les sous-problémes que nous avons définis, le budget d’arétes i peut étre un entier
positif arbitrairement grand, ce qui signifie qu’il existe une infinité de sous-problemes.
Comment savoir quand s’arréter ?

Un bon critere d’arrét découle de I'observation suivante : les solutions d’un lot donné de
sous-problémes, pour un budget d’arétes fixé i et un sommet v, ne dépendent que des
solutions du lot précédent (budget i - 1). Ainsi, si un lot de sous-problémes a a un moment
exactement les mémes solutions optimales que le lot précédent (le cas 1 de la récurrence
I’emportant pour chaque destination), alors ces solutions optimales resteront identiques
pour toujours.

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

On peut ainsi définir le critere d’arrét de Bellman-Ford :

Critére d’arrét de Bellman-Ford
Si pour un certain k on a, pour toutv € V:

Liy1v = Liw
...alors :
- Liv =L pourtouti2k et toute destination v ; et
- Pour toute destination v, Lk est la distance de plus court chemin correcte
dist(s, v) de s —»> v dans G.

Ce critere d’arrét promet qu’il est sans danger de s’arréter des que les solutions des sous-
probléemes se stabilisent, c’est-a-dire dés que Lx+1,v = Ly pour un certain k 2 0 et pour tout v
EV.

Mais cela finira-t-il par se produire ? En général, non. Toutefois, si le graphe d’entrée ne
contient aucun cycle négatif, les solutions des sous-problémes sont garanties de se stabiliser

au plus tard lorsque i atteint n, le nombre de sommets.

On peut ainsi définir le critére d’arrét de Bellman-Ford pour des graphes sans cycle négatif :

Critére d’arrét de Bellman-Ford pour des graphes sans cycle négatif

En supposant que le graphe d’entrée G ne contient aucun cycle négatif, ona:

Ln,v = Lp_ 1,v

pour toute destination v, ou n est le nombre de sommets du graphe d’entrée.

Cela montre que si le graphe d’entrée ne contient pas de cycle négatif, alors les solutions des
sous-problémes se stabilisent au plus tard au n-iéme lot. Ou, sous forme contraposée : si les

solutions des sous-problémes ne se stabilisent pas au plus tard au n-iéme lot, alors le graphe
d’entrée contient bien un cycle négatif.

Ensemble, ces deux derniers critéres d’arrét indiquent quel est le dernier lot de sous-
problémes dont il vaut la peine de s’occuper : celui correspondant ai=n.

Si les solutions des sous-problémes se stabilisent (avec Lny = Ln-1,v pour tout v € V), alors le
premier critére implique que les valeurs Ln-1, sont les distances de plus court chemin
correctes.

Si les solutions des sous-problémes ne se stabilisent pas (avec Lny = Ln-1,y pour au moins un
sommet v € V), alors la contraposée du deuxiéme critére implique que le graphe d’entrée

G contient un cycle négatif, auquel cas I'algorithme est dispensé de calculer des distances de
plus court chemin et retourne qu’un cycle négatif a été détecté.

Le plus grand sous-probleme utile qu’il est nécessaire de calculer pour obtenir la distance
optimale de s vers v est donc (n-1, v). Le sous-probléme (n,-) sert a la détection de cycle
négatif.

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

IV) SOUS-PROBLEMES ET COMPLEXITE

IV.1. Définition des sous-problemes

Rappelons ici les sous-problemes en prenant en compte les critéres d’arréts :

Sous-problémes de I'algorithme de Bellman-Ford

Calculez Liy, la longueur d’un plus court chemin de s a v dans G comportant au plus
i arétes, les cycles étant autorisés. (Si un tel chemin n’existe pas, définir Liy = +)

(Pour chaquei=0,1,2..netchaquev e V)

Le plus grand sous-probléme utile pour les distances est (n-1, v). La ligne (n,-) sert a la
détection de cycle négatif.

IV.2. Exemple d’application des équations de récurrence — graphe sans cycle négatif

Avant d’aller plus loin, regardons un exemple de I'application des équations de récurrence
de Bellman-Ford en action (avec une vision bottom-up) pour appréhender la structure des
algorithmes a venir.

Considérons le graphe d’entrée de la figure suivante a l'itération i == 0 (cas de base) :
L[O][v]=+=

L[O][u]=+0
Figure 8 : Valeurs des sous-problémes a l'itération i = 0

Chaque itération de I'algorithme évalue I’équation de récurrence en chaque sommet, en
utilisant les valeurs calculées a I'itération précédente. Lors de la premiére itérationai==1,
la récurrence vaut :

- L[1][s] =0 car s n'a pas d’arétes entrantes, donc le cas 2 de la récurrence est vide ;

- L[A)[u] =2 car L[O][s] +@su=2;

- L[1][v] = 4 car L[O][s] + €5y =4 ;

- L[1][w] = 400 car L[0][u] = +co.

L[1][t]=+e0
Lot =+

L[1][s]=0
Holfs}=6

2 2
L[1][w]=+0
L[1][u]=2 0 2 _
[O}is}=os HoHed=+=

Figure 9 : Valeurs des sous-problémes a l'itération i = 1

10

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

A I'itération suivante, s et u héritent tous deux de leurs solutions de I'itération précédente :
- Lavaleurenvpassealcarlechemins — u— v (L[1][u] + 8.y = 1) est plus court que
le chemins — v (L[1][s] + sy =4);
- Lanouvelle valeur enw est 4 car L[1][u] + euw=4;
- Lanouvelle valeur en t est 8 car L[1][v] + 8,:=8.

L[2][v]=1
Hbg=4
Holp=+ee
L[2][s]=0 L[2][t]=8
Hfs}=0 Hajfg=tee
Hol{sl=0 Holfg=+e=
L[2][u]=2 HaHwd=tee
Hui=2 HoHwg=tee

HoHul=+se
Figure 10: Valeurs des sous-probléemes a l'itération i = 2

A la troisiéme itération :
- Lavaleur entchute a5 car L[2][v] + €.t =5, ce qui est meilleur a la fois que L[2][t] =8
et que L[2][w] +8w:=6;
- Les quatre autres sommets héritent de leurs solutions de I'itération précédente.

L[3][v]=1

L[3][s]=0
H2ifsi=0
HHHsi=0

Figure 11 : Valeurs des sous-problémes a I'itération i = 3

Rien ne change lors de la quatriéme itération (le graphe n’a pas de cycle négatif donc L[i][-] =

LG-1]00) -

L[4][v)=1
H3}d=1
H2}hv=1
Hilhi=4
HoH=toe
L[4][s]=0 4 o L[4][t)=5
Y3}s}=0 4 H3}=5
H2}{s}=0 H2}tj=8
Hils}=0 L=t
HoHs}=0 HOJtj=soe
2 2
L[4][u]=2 o > o L[4][w)=4
H3Huj=2 H3}wi=4
H2jul=2 H2Hwi=4
L2 Halwd=too
HOHu}=see HoHwd=+es

Figure 12 : Valeurs des sous-problémes a l'itération i =4

11

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

IV.3. Exemple d’application des équations de récurrence — graphe avec cycle négatif

Considérons maintenant le graphe ci-dessous avec un cycle négatif (u — v — w — u) qui est

atteignable depuis la source, a l'itération i == 0:

L[0][w]=+

L[0][s]=0 L[0][v]=+e

Figure 13: Valeurs des sous-probléemes a l'itération i =0

Lors de la premiere itération a i == 1, la récurrence vaut :

- L[1][s] =0 car s n'a pas d’arétes entrantes, donc le cas 2 de la récurrence est vide ;

- L[1][u] = 1 car min {L[O][u], L[O][s] + €s,, L[O][W] + 8w} =1;
- L[1][x] = +oo car L[0][x] et L[0][u] valent tous les deux +x ;
- L[1][v] = +oo car L[0][v] et L[O][u] valent tous les deux + ;
- L[1][w] = +o0o car L[0][w] et L[O][v] valent tous les deux +x ;

L[1][w]=+0
HOHwd=4ee

L[1][s]=0

{0Hs}=6 L[1][v]=40

Figure 14 : Valeurs des sous-problémes a l'itération i = 1

Lors de l'itération a i == 2, la récurrence vaut :
- L[2][u] reste a 1 car min{L[1][u], L[1][s] + @su, L[1][W] + 8w u}=1;
- L[2][x] passe a 5 car min{L[1][x], L[1][u] + 8ux}=5;
- L[2][v] passe a -1 car min{L[1][v], L[1][u] + Buyv}=-1;
- L[2][w] reste a +oo car L[1][w] et {L[1][v] + €\,w} valent +o0

L[2][w]=4+00
sl ()
HoHwi=+e
-1
L[2][s]=0 L[2][v]=-1
=6 =+
HoHsl=0 L[2][u]=1 HoHw=+e

4| ajpul=a
L[2][x]=5 o=
b=+
e
Figure 15 : Valeurs des sous-problémes a I'itération i = 2

12

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

Lors de l'itération a i == 3, la récurrence vaut :
- L[3][u] reste a 1 car min {L[2][u], L[2][s] + €s,u, L[2][W] + Bw,u}=1;
- L[3][x] reste a 5 car min{L[2][x], L[2][u] + €ux}=5;
- L[3][v] reste a -1 car min{L[2][v], L[2][u] + €y} =-1;
- L[3][w] passe a -4 car min{L[2][w], L[2][v] + &y} = -4.

L[3][w]=4

L2 iwlse

L liwlse

Lol wl=se
L[3](s]=0 L[3][v]=-1
Li2}is}=0 L2l=1
L{}is}=0 @ 1 Hivi=tes
LIo}s}=0 LioHvi=tee

L[3][x]=5

Figure 16 : Valeurs des sous-problémes a l'itération i = 3

Lors de l'itération a i == 4, la récurrence vaut :
- L[4][u] passe a -5 car min {L[3][u], L[3][s] + &s.u, L[3][W] + Bwu}=-5;
- L[4][x] reste & 5 car min{L[3][x], L[3][u] + Bux}=5;
- L[4][v] reste a -1 car min{L[3][v], L[3][u] + €y }=-1;
- L[4][w] reste a -4 car min{L[3][w], L[3][v] + &,w} = -4.

L[4][w]=-4

L3 wl=—a

LRHw)=seo

LAl =akoo
L[a]s}=0 HOHwd=tee L[4][v]=-1
L{3}s}=0 L3v)=-1
Lio}s}=0 Lo v)=+ee

L[4][x]=5

HBHd=5 A Hi}ul=2
H24bd=5 (X) LoHu]=+ee
Hpd=+ee
Hopd=+ee

Figure 17 : Valeurs des sous-problémes a I'itération i = 4

Sans cycle négatif, on pourrait s’arréter a i == 4. Mais la présence d’un cycle négatif
atteignable depuis la source va modifier les valeurs a la prochaine itération.

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

Lors de l'itération a i == 5, la récurrence vaut :
- L[5][x] passe a -1 car min{L[4][x], L[4][u] + €ux}=-1;
- L[5][v] passe a -7 car min{L[4][v], L[4][u] + 8. }=-7;
- Les autres valeurs ne changent pas.

L[5][w]=-4
Hafwi=4
H3Hwl=4
2w =4se
Hipad=+ee
L[5][s]=0 iOHw=+ee L[5][v]=-7
LiaHs)=0 (4}iv}=3
L3lsl=0 1 [3]0y]=1
t2hsi=o (S ESTN
Lialsl=0 ZETN I
LIOls1=0] i [0 =tos
[5][x]=-
Had=5
H3id=5
H2Hx=5
i pd=es
L{oH=+ee

Figure 18 : Valeurs des sous-problémes a l'itération i =5

A ce moment, on peut renvoyer qu’un cycle négatif a été détecté carily a eu un
changement entre i == (n-1) et i ==n.

Puisque le cycle négatif est atteignable depuis la source, le graphe ne se stabilisera pas. A
I'itérationai==6:

- L[6][u] passe a -5 car min {L[5][u], L[5][s] + €s,u, L[5][W] + 8w,u}=-5;

- L[6][x] reste a -1 car min{L[5][x], L[5][u] + 8ux}=-1;

- L[6][v] reste a -7 car min{L[5][v], L[5][u] + u\}=-7;

- L[6][w] passe a -10 car min{L[5][w], L[5][v] + &yw} = -10.

L[6][w]=-10

L[6][v]=-7

Figure 19 : Valeurs des sous-probléemes a l'itération i = 6

Ainsi, L[6][w] évolue encore, ce qui va faire évoluer par la suite les autres valeurs. Ce graphe

ne se stabilisera pas car le cycle négatif u > v — w — u est atteignable depuis la source.

14

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

IV.4. Schéma de récursion

Dans les exemples précédents, nous avons surtout raisonné « par lots » : on part des cas de
base i = 0, puis on calcule successivement toutes les valeurs pouri=1, puisi=2, etc. C'est la
vision « bottom-up » naturelle d’un algorithme itératif comme Bellman-Ford.

Pour comprendre précisément les dépendances entre sous-problémes, il est toutefois utile
de changer temporairement de point de vue et d’adopter une lecture « top-down » de la
récurrence : on fixe un sous-probléme cible (n, v) et on « déplie » la relation de récurrence
en un arbre de récursion qui montre de quels sous-problemes plus petits dépend sa valeur.
On part alors du haut (le probléme que I'on cherche a résoudre) et I'on descend vers les cas
de base (0, -). Cette représentation met en évidence les sous-problémes recalculés plusieurs
fois en I'absence de mémoisation, et elle explique naturellement pourquoi I'approche « top-
down » avec mémoisation et I'approche « bottom-up » aboutissent aux mémes valeurs.

A partir d’un sous-probléme (i, v), la récurrence fait dépendre L;y de (i-1, v) (cas n°1) et de
tous les (i-1, w) tels que (w, v) € E (cas 2, choix du dernier saut).

Donc I'arbre de récursion partant de (i, v) descend en diminuant i jusqu’a 0, et a chaque
niveau, il peut se ramifier vers plusieurs prédécesseurs w de v. Visuellement, on peut
représenter un noeud (i, v) pointant vers (i-1, v) et vers tous les (i-1, w) entrants dans v.

Le schéma de récursion sur un exemple de graphe est donné sur la figure 20 ci-dessous. Le
graphe contient 4 sommets et on démarre a i = 3 (pour alléger le schéma, on considere
gu’on sait qu’il n’y a pas de cycle négatif). On cherche uniquement la distances —> v :

- La notation P[3][V] signifie gqu’on cherche la longueur du plus court cheminde SaV
dans G comportant au plus 3 arétes. L[3][V] est la valeur optimale associée a ce sous-
probleme ;

- Dans le cas n°1 (branches de gauche), a partir des cas de base, on remonte la valeur
L[i-1][x] oux € V;

- Dans les sous-cas n°2 (branches de droite), a partir des cas de base, on remonte les
valeurs L[i-1][w] + €wx pour tous les x que (w, x) € E.

- Lesvaleurs L[i][x] prennent le minimum des valeurs remontées.

/-\

(&~
n S A B v Comme n=4, on commence a i=3 (’;\ 2
80 o inf inf inf PIIIV] - V)
o = /
a1 0 2 6 5 Casn’l:chercher P[3][V] Lallvl=0 ~—
: revient a chercher P[2][V] 2420 Cas n°2 : chercher P[3][V] revient & chercher
g 2 0 -2 5) Ct5:_5_ _______________ tous les P[2][w] tels que (w,v)<E
5 3 0 T ~ -
Pl2][V] L7 P[2][s] P[2](B]
L[2)[VI=5 .. L[2][s}=0 L[2][8)=-2
6+2=8 I -1
5 i 0 0 2-4=2
045=5 0+626
P[1][V] P[1][s] P[1][8] P[1][s] P[1](B] P1](s] P[1][A]
L[1)[V]=5 L[1)[s])=0 L[1][B)=6 L[1][s]=0 L[1][8]=6 L[1][s}=0 L[1][A)=2
| - (valeur déja calculée) (valeur déja calculée) (valeur déja calculée)
0+6=6
inf inf+2=inf 0 inf) 0+2=2
inf \
0+5=5 inf-4=inf
Plo][v] Plo](s] Plo](8] plo][s] Pl0](B] Plo][A] Plo](s] POIA] P0]is]
L[o][V]=inf L[0][S]=0 L[o)[B)=inf L[0][S)=0 L[o](B]=inf L[0][A]=inf L[o][s]=0 L[O][A]=inf L[o][S]=0

Figure 20 : Exemple de récursion sur un graphe

15

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

V) ALGORITHMES DE PROGRAMMATION DYNAMIQUE
V.1. Algorithme top-down

Algorithme top-down pour le calcul des valeurs optimales

Entrée : G = (V, E), sommet source s € V, longueurs €. pour chaque aréte e € E.
Sortie : dictionnaire des distances dist{} (depuis la source s) ou « Cycle négatif »

L:={} # Dictionnaire de mémoisation
dist :={} # Dictionnaire des distances
n:=|V|

rec_opt_val_BellmanFord (i, v) :
Utilise la mémoisation
Si (i, v) estdansL:
| Retourner L[(i, v)]

Cas de base

Sii==0:
Siv==s:
| i, vi=0
Sinon :
| LG, V)] =400
Retourner L[(i, v)]
Casn’l

val_opt :=rec_opt_val_BellmanFord(i- 1, v)

Sous-cas du cas n°2

Pour chaque aréte (w, v) entrante dans v :
candidat := rec_opt_val_BellmanFord(i - 1, w) + €u,v
val_opt := min(val_opt, candidat)

L[(i, v)] := val_opt
Retourner L[(i, v)]

Calcul des distance optimale s —» v, pour tous lesv e V
Pour chaque vdans V:
| dist[v] := rec_opt_val_BellmanFord(n-1, v)

Appel pour détecter les cycles négatifs atteignables depuis s
cycle_negatif := « Faux »
Pour chaque vdans V:
test := rec_opt_val_BellmanFord(n, v)
Si test < dist[v] :
| cycle_negatif := « Vrai »
Si cycle_negatif == « Vrai » :
| Retourner « Cycle négatif »
Sinon :
| Retourner dist

16

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

V.2. Complexité de I’algorithme top-down

Un sous-probleme est entierement déterminé par deux parametres : le budget de sauts i
(nombre maximal d’arétes utilisées) et la destination v (sommet d’arrivée).

Le budget maximal considéré est de (n+1) (ou n = |V]) si on souhaite tester la présence de
cycles négatifs (i € {0, 1, ..., n}). On a donc n:(n+1) sous-problémes distincts, soit un nombre
de sous-problémes en O(n?).

Chaque sous-probléme est calculé au plus une fois grace a la mémoisation. Si I'algorithme
n’effectuait qu’un travail a co(t constant par sous-probléme, sa complexité temporelle serait
donc de O(n?). Mais résoudre un sous-probléme pour une destination v implique une
recherche exhaustive parmi 1 + deg~ (v) candidats, ol deg~ (v) est le nombre d’arétes
entrantes en v. Comme le degré entrant d’un sommet peut étre aussi grand que (n - 1), cela
semble donner une borne en temps de O(n) par sous-probléme, et donc une borne en temps
totale de O(n3).

Mais concentrons-nous sur une itération pour une valeur fixée de i. Le travail total effectué
sur I’'ensemble des itérations pour cette valeur de i est proportionnel a :

Z(l +deg(v))=n+ Z deg~(v)

vEV vev

La somme des degrés entrants est égale au nombre d’arétes. Pour s’en convaincre, imaginez
retirer toutes les arétes du graphe d’entrée puis les rajouter une a une. Chaque nouvelle
aréte augmente de 1 le nombre total d’arétes, et augmente aussi de 1 le degré entrant
d’exactement un sommet (I'extrémité d’arrivée, ou « téte », de cette aréte).

Ainsi, le travail total effectué a chaque itération pour une valeur fixée de i est O(n + m).
Comme il y a au plus n itérations de ce type, le travail total est en O(n-(n+m)) = O(n-m+n2).
Dans les cas fréquents ol m > n, on obtient une borne de temps d’exécution totale de
O(m-n). Dans les graphes clairsemés, ou m est linéaire ou quasi linéaire en n (m = O(n)), cela
donne O(n?).

Dans le dictionnaire, on stocke au maximum n-(n+1) valeurs, soit O(n?) valeurs. La pile de
récursion a une profondeur maximale de O(n). L'espace total est donc dominé par le
dictionnaire.

17

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

V.3. Algorithme bottom-up

L’algorithme bottom-up remplit progressivement les valeurs Liy par budgets croissants i, en
partant des cas de base.

Algorithme bottom-up pour le calcul des valeurs optimales

Entrée : G = (V, E), sommet source s € V, longueurs 8. pour chaque aréte e € E.
Sortie : dictionnaire des distances dist{} (depuis la source s) ou « Cycle négatif »

L:={} # Dictionnaire de mémoisation
dist :={} # Dictionnaire des distances
n:=|V|

opt_val_BellmanFord() :

Cas de base

Pour chaque u dans V:
L[(0, u)] := +o0

L[(0,s)] :=0

Pouriallantdelan:
Pour chaque u dans V:
Casn°l

L[(i, u)] == L[(i - 1, u)]

Sous-cas du cas n°2
Pour chaque aréte (w, u) € E entrante dans u :
I L[(l, U)] = min {L[(II U)], L[(I - 1IW)] + 'BW,U}

Distances
Pour chaque udans V:
| dist[u] := L[(n-1, u)]

Détection de cycle négatif atteignable depuis s
cycle_negatif := « Faux »

Pour chaque udans V:
SiL[(n, u)] < L[(n-1, u)] :
| cycle_negatif := « Vrai »

Si cycle_negatif == « Vrai » :

| Retourner « Cycle négatif »
Sinon :

| Retourner dist

18

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

Voici deux exemples de tables remplies avec I'algorithme top-down et bottom-up dans le cas ou

la distance recherchée est uniguement s — v :

2 0 0 inf inf inf 2 0 0 inf inf inf
3 3

g 1 0 2 6 5 g 1 0 2 6 5
- -

£ 2 0 -2 5 £ 2 0 2 -2 5
S S

2 3 0 2 3 0 2 -2 0

Figure 21 : Tables des valeurs optimales top-down (gauche) et bottom-up (droite)

Comme d’habitude, I'algorithme top-down ne calcule que les sous-problémes nécessaires a
la distance demandée. Si on ne cherche que la distance vers une destination v, le top-down

peut éviter de remplir des états inutiles ; si on veut toutes les distances dist(s,v) pour tout v,

alors top-down et bottom-up calculent en pratique une grande partie des états.

V.4. Complexité de I'algorithme bottom-up
Le bottom-up calcule systématiquement tous les sous-problémes (i, v) pour tous les i et v. Il

y a donc O(n?) problémes a calculer, et comme nous I'avons vu précédemment la complexité

temporelle est de O(n-m) car chaque sous-probleme examine les arétes entrantes. La
complexité spatiale est de O(n?).

On pourrait facilement réduire I'espace a O(n) en ne gardant que deux lignes de la table
(ligne i-1 et ligne i) car ce sont uniquement ces lignes qui sont nécessaires pour calculer les

équations de récurrence. Mais cette optimisation a un inconvénient : on perd la capacité de

reconstruire le chemin optimal directement a partir de la table, puisqu'on ne conserve plus
I'historique complet des valeurs L;,. Pour pallier ce probléeme, on peut maintenir un
dictionnaire de prédécesseurs pred{} qu'on met a jour a chaque fois qu'on améliore la
distance vers un sommet v (voir les méthodes de reconstruction en page 21).

Au lieu de calculer tous les Ly pour i ={0, 1, .., n} et pour chaque v € V, a chaque itération on

calcule pour chaque sommet v :
L, (cas n°1)
L, = min
Min(y,) e E{ L, + {’W,,,} (casn°2)
Le premier terme correspond au cas n°1 (on garde la valeur précédente), le second au cas
n°2 (on améliore via un prédécesseur).

19

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

Algorithme bottom-up optimisé en mémoire avec sauvegarde des prédécesseurs

Entrée : G = (V, E), sommet source s € V, longueurs €. pour chaque aréte e € E.
Sortie : dictionnaire des distances dist{} (depuis la source s) et dictionnaire des
prédécesseurs pred ou « Cycle négatif »

dist := {} # Dictionnaire des distances
pred := {} # Dictionnaire des prédécesseurs
n:=|V|

opt_val_BellmanFord() :
Cas de base (i==0)
Pour chaque udans V:

Siu==s:

| distfu]:=0
Sinon :

| dist[u] := +o0
pred[u] := None

Itérations principales (n-1 itérations pour les distances)
Pouriallantdelan-1:
Pour chaque u dans V:
Pour chaque aréte (w, u) entrante dans u :
Si dist[w] + 8w, < dist[u] :
dist[u] := dist[w] + 8w,y
pred[u] :=w

Détection de cycle négatif (n-iéme itération) atteignable depuis s
cycle_negatif := « Faux »

Pour chaque udans V:
Pour chaque aréte (w, u) entrante dans u :
Si dist[w] + 8w,y < dist[u] :
I cycle_negatif := « Vrai »

Si cycle_negatif == « Vrai » :

| Retourner « Cycle négatif »
Sinon :

| Retourner dist, pred

Vi) ALGORITHME DE RECONSTRUCTION

VI.1. Principe et algorithme de reconstruction

L’objectif est ici de reconstruire un plus court chemin (ou, plus généralement, un « arbre des
prédécesseurs ») depuis s vers un sommet v, a partir des informations calculées par la
programmation dynamique.

On peut considérer deux approches : la reconstruction a partir de la table L[i][v] et |a
reconstruction via un tableau de prédécesseurs.

20

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

Premiére approche : Reconstruction a partir de la table L[i][v]
On partde (i,v) =(n-1, v) et on remonte :
- SiL[i][v] == L[i-1][v], alors la solution optimale pour le budget i n’utilise pas I'aréte
supplémentaire : on remplace i par i-1.
- Sinon, on cherche un prédécesseur w tel que (w, v) E E et

Llil[v] = L[i = 1][w] + £y,

... puis ajoute 'aréte (w, v) a la reconstruction, puis on remplace v <~ weti<«i-1
- Ons’arréte quand v = s (chemin reconstruit).

Dans I'approche top-down avec mémoisation, les valeurs L[i][v] sont stockées dans un
dictionnaire indexé par les paires (i, v). Lorsqu’on calcule effectivement L[i][v] a 'aide de la
récurrence, on est amené a évaluer L[i-1][v] (cas n°1) ainsi que L[i-1][w] pour tous les
prédécesseurs w tels que (w, v) € E (cas n°2).

Par conséquent, si on a déja calculé L[n-1][v] en top-down, toutes les clés (i’, x) nécessaires a
la reconstruction d’un plus court chemin vers ce méme sommet v ont en principe été
rencontrées et mémorisées au passage.

Pour rendre la reconstruction robuste, on peut soit appeler la fonction récursive mémoisée
au moment de la reconstruction (ce qui calcule la valeur si elle manque), soit, plus
simplement, mémoriser des le calcul de chaque état (i, v) le « choix » gagnant (héritage v ou
prédécesseur w) : la reconstruction devient alors un simple parcours de pointeurs, sans
dépendre de la présence de toutes les valeurs intermédiaires dans le dictionnaire.

Algorithme de reconstruction

Entrée : G = (V, E), table L ={...}, source s et destination v.
Sortie : Liste d’arétes (ou sommets) du chemin optimum s — v.

Reconstruction_BellmanFord (L, s, v) :
SiL[(n-1, v)] == +c0:
Retourner « destination inatteignable »

chemin =] # Chemin a reconstruire
i:=n-1
S_Cur:=v # Sommet courant

Tantques cur=seti>0:
Si L[(i-1, s_cur)] existe et L[(i, s_cur)] == L[(i-1, s_cur)] :
i=i-1
Sinon :
o (w,s_cur)eE

Trouver un prédécesseur w tel que : { LG, s.cur)] == L[(i = 1, W)] + €uc cur
Ajouter (w, s_cur) a chemin
S_Ccur:=w
i=i-1
Retourner le chemin inversé

21

PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

COURS

On partde chemin= ;i=3,s_=V
chemin =[]

|

L[3][V] == L[2][B] + &,
* = Insérer (B,V) a chemin

- 4\\ —=s_=B
e =im=il(i==2)

1l \
2 LBIVI=0 chemin = [(B,V)]

Casn’l:chercher P[3][V] o - <=
revient a chercher P[2][V] \\\ Cas n°2 : chercher P[3][V] revient a chercher h

1

- [0+5=5 | | h
\\\\ _, tous les P[2][w] tels que (w,v)eE _._”N“—m_\nn _.H_._m—.ﬁ +—._N>\m .
PL2IIV] P(21(5] p -mz:m,_/,\\\\v M«Emﬂ.: /B) 3 chemin
L[2][V]=5 L[2][S]=0 K..r._.M:EuwN\ = _Wu i-1(i==1)
| chemin =[(B,V) ; (A,B)]
5 - 0 0|
_— i , ~__ L[1][A] == L[O][S] + £ 5
PV PLLIIS] PLLI(E] PLLI(S] P1](E] PLIST 7 PLAIA] Ty 7 = Insérer (S,A) & chemin
LIv=s L{1lis}=0 Li18)=6 Lalis}=o LEl=6 BNt B
/,/ | 0466 (valeur déja calculée) (valeur déja calculée) (valeur déja calculée) TUAS = i=il __ == OU
| ezt ; 0+6= . 012-2 chemin =[(B,V) ; (A,B); (S,A)]
| 0+5=5 // _ivnum:y// F i==0ets_==5:Inverser chemin
P[O]V] P[O][S] P[O][B] P[O][S] P[O][B] P[O][A] P[o](s] P[O][A] _\\\Eo:m_ :/_ chemin = [(S,A) ; (A,B) ; (B,V)]
L[0][V]=inf L[0][s]=0 L[0][B]=inf L[O][S]=0 L[0][B]=inf L[O][A]=inf L[o][s]=0 L[0][A]=inf *, L[o][s]=0 A Termem

Figure 22 : Illlustration du principe de reconstruction a I'aide de la table des valeurs optimales

22

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE BELLMAN-FORD

Deuxieme approche : reconstruction via un tableau de prédécesseurs.

Pendant les itérations, on maintient la liste pred_v[], qui enregistre les sommets
précédents choisis quand on améliore dist_v. Si I'algorithme termine sans cycle négatif,
suivre pred_v depuis v jusqu’a s reconstruit un plus court chemin.

Cette méthode de reconstruction est particulierement adaptée dans le cas ol on cherche a
économiser de I'espace mémoire en ne gardant en mémoire que les deux lignes de la table
(ligne i-1 et ligne i).

Algorithme de reconstruction via un tableau de prédécesseurs

Entrée : dictionnaire des prédécesseurs pred{}, source s, destination v.
Sortie : Liste d’arétes (ou sommets) du chemin optimum s — v.

Reconstruction_BellmanFord (pred, s, v) :
Vérifier que v est atteignable
Sipred[v] == Noneetv#s:
I Retourner « Destination inatteignable »

Reconstruction en remontant les prédécesseurs
chemin :=[v]
sommet_courant :=v

Tant que sommet_courant #s:
sommet_courant := pred[sommet_courant]
Ajouter sommet_courant a chemin

Retourner chemin inversé

VI.2. Complexité finale

Pendant la reconstruction, avec la table L, on décrémente i au plus (n-1) fois et on suit au
plus (n-1) arétes. La complexité temporelle est donc en O(n) pour reconstruire un chemin
vers une destination donnée.

La complexité temporelle totale (calcul + reconstruction) est donc de O(n-m) + O(n) =
O(n-m).

23

